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In reality, when deposition occurs there exists a sticking 
probability which is related to the adhesion of particles at the 
immediate vicinity of the wall, even though there is no drifting 
motion due to field effects [8]. The adhesive forces are either 
electrical or liquid (viscosity and surface tension) in nature. 
The observed mean deposition velocity therefore includes the 
probability that some droplets do not merge into the wall 
layer, but rebound and are removed by turbulent diffusion. 
There is, however, the possibility that the rivulent flow in a 
steel tube might be disturbed differently in an acrylic tube, 
even though the two flow rates were the same. Since sticking 
on a rivulet might be different from sticking on a dry surface, 
the overall deposition rate in the rivulet flow of an acrylic tube 
might be different from that in a steel tube. Because the 
entrainment in the present case is ins&n&ant, and also due to 
the agreement of the deposition data for the two test surfaces, 
it can be inferred that the sticking probability for these 
conditions is close to unity. It therefore appears that the 
deposition rates for dry wall dispersed flow, rivulet dispersed 
flow, and annular dispersed flow are all represented by the 
data of Fig. 2, for the conditions studied here. 

It can be concluded from the above results and discussion 
that for the conditions studied in the present work represent- 
ing drop sizes and flow Reynolds number typical of many 
two-phase flow applications, the data for adiabatic acrylic 
tube may be used directly in the heat transfer analysis of 
dispersed two-phase flow in metallic tubes provided that 
there is no significant droplet entrainment. It should, how- 
ever, be recognized that in some cases the condition of 
adiabatic tube may be much different from the condition of a 
heated tube due to non-uniform evaporation of droplet, vapor 
generation near the tube surface and change of surface 
tension at high temperatures, etc. Therefore, in such si- 
tuations, the conclusion of this experiment may not be able to 
be applied to heated tubes directly without justification. 

Acknowledgement-This work was performed with support 
of the National Science Foundation under grants ENG78- 
062 11 and ENG80-0568 1. 

REFERENCES 

1. E. N. Ganic and W. M. Rohscnow, Dispersed flow heat 
transfer, Int. J. Heat Mass Transfer 20, 855-866 (1977). 

2. K. Mastanaiah and E. N. Ganic, Heat transfer in two- 
component dispersed flow, J. Heat Trunsfer 103, 
300-306 (1981). 

3. L. B. Cousins and G. F. Hewitt, Liquid phase mass 
transfer in annular two-phase flow : Droplet deposition 
and liquid entrainment, AERE-R 5657 (1968). 

4. Y. Hagiwara, K. Suzuki and T. Sato, An experimental 
investigation on liquid droplets diffusion in annular-mist 
Row, Multiphase Transporr (edited by T. N. Veziroglu), 
Hemisphere (1980). 

5. E. N. Ganic and K. Mastanaiah, Investigation of droplet 
deposition froma turbulent gasstream,lnt. J. Multiphase 
FIow 7,4Ol-422 (1981). 

6. K. Mastanaiah, Experimental and theoretical investi- 
gation of droplet deposition and heat transfer in 
air-water dispersed flow, Ph.D. Thesis, University of 
Illinois at Chicago Circle (1980). 

7. T. Q. Minh and J. Huyghe, Some hydrodynamical 
aspects of annular disperskd flow : Entrainment-and film 
thickness, Symposium on Two-Phase Flow, Paper C2, 
Exeter, England (1965). 

8. S. L. Soo and S. K. Tung, Deposition and entrainment in 
pipe flow of suspension, Powder Technol. 6, 283-294 
(1972). 

Int. J. Heat Mass Trunsju Vol. 25. No. 3, pp. 424-425, 1982 
Printed in Great Britain 

MINIMUM MASS CONVECTIVE ANNULAR FIN 

CO1 7-93 IO/82/03C424- 02 $03.00/0 

Pergamon Press Ltd. 

J. ERNEST WILKINS, JR. 

EG & G Idaho, Inc., P.O. Box 1625, Idaho Falls, ID 83415, U.S.A 

(Received 16 April 1981) 

INTRODUCTION 

IN A RECENT paper Mikk [l] has considered the problem of 
minimizing the mass of an annular fin on a cylindrical base of 
specified radius that rejects heat to the surroundings by 
convection at a specified rate. He asserts that, contrary to the 
results of Schmidt [2] and Duffin [3], the temperature at the 
tip of the minimum mass fin is not the same as that of the 
ambient fluid. In this paper we call attention to a logical flaw 
in his analysis that invalidates his conclusions. Moreover, if 
this flaw is corrected, his analysis then leads immediately to 
the earlier results. 

We will use Mikk’s notation and refer to equations in his 
paper without further explanation. 

NOMENCLATURE 

1, fin height [ml; 

“d, 
dimensionless heat flux Q/Q, ; 
heat flux per meter of fin base [W/m] ; 

r, radius [m] ; 

dimensionless volume 2r.a2$V/Q: ; 
fin volume per meter of fin base [m’]; 
heat transfer coefficient [W/(m’K)] ; 
fin thickness [m] ; 
dimensionless parameter Q1/2ar,9, ; 
excess of fin temperature over temperature of am- 
bient fluid [K] ; 
dimensionless temperature {j/3, ; 
thermal conductivity [W/(m.K)] ; 
dimensionless radius r/l; 
dimensionless parameter al’/,@, ; 
radius ratio r2/r, ; 
dimensionless parameter Q,1/,@,6, ; 
dimensionless fin thickness 6/S,. 

Subscripts 

I, 
2, 

fin base; 
fin tip. 
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THE FLAW IN MIKK’S ANALYSIS 

The difficulty arises in the transition from Mikk’sequations 
(29) and (30) to (31). Mikk assumes in this derivation that 0, 
and cp are independent variables, so that cp can be held 
constant while differentiating with respect to ez. It is obvious, 
however, from his equation (1) that I = rl(‘p - l), and then 
from his equations (2) and (4) that u/x =cG,/Q, =(cp- l)/ 
2~ if E is defined as Q,/2ctr,9,. Moreover, it follows from his 
equations (19) and (23) that a/x = 3/[~ + 2 + (2q + I)&]. 
We conclude that 

ez = 
6~ - (cp - 1) (cp + 2) 

(2V+l)(cp-l) 

For fixed fluid conditions and fixed surface properties of 
the fin, the quantities a and 9, are constant. The cylinder 
radius ri and the heat transfer rate Qi (or 2nr,Q,) are also 
specified. Therefore, E is constant and 0, and cp are not 
independent variables in Mikk’s equation (29). 

If due account is taken of our equation (I), we can correctly 
determine that 

m + 1 m(P - 1 )“G 
54&3[~2-2~(1+4&)+ 1+2&]((p2- l-2&)2 

(2) 

We observe that, if e2 ~0, then Mikk’s equation (9) would 
imply that dq/dp>O when p = pZr his equation (13) would 
then imply that 4 < 0 if p is close to (but not equal to) pz, his 
equation (20) would imply that df3/dp <O for all p, and finally 
his equation (8) would imply that A < 0 if p is close to (but not 
equal to) pz. Although Mikk nowhere mentions it, this last 
implication is clearly not acceptable, i.e. the only fin profiles 
that make sense are such that A>0 when pi~p<p~. 
Moreover, it follows from Mikk’s equation (9) that ~9~ < 1. 
Therefore, the only values of 8, that make sense lie on the 
half-open interval [0, 1). 

Because cp> 1 (obviously) for any finite ri, we infer 
from (1) that #+(~<2(1+3~); hence the factor 
‘p2 - 2~( 1 + 4~) + 1 + 2~ in the denominator of (2) does not 
exceed (3 + 86) (1 - cp), and so is negative. In addition, it 
follows from (l), or the argument leading to (I), that 

rp-1 3(q+l) 3(Vfl) 

~ = cp+2+(2q+1)e, ’ 2E (p+2+2q+1= l 

because 8, < 1. We thus see that the factor ‘p2- 1-2~ in the 
denominator of (2) is positive. We conclude from (2) that 
dv/dt7, > 0 unless e2 = 0. The minimum value of u therefore 
occurs when t12 = 0, i.e. when (~2 + cp = 2( 1 + 3c), and is such 
that 

“In,” = 9((P + l)/(cp + 2)3 

= (9/16a3) { 1 + 4~ + (8/3)&l - [l + (Sr/3)]3’2}. (3) 

Our equation (3) is of course the result that would have 
been obtained by Schmidt [2] or Duffin [3] if they had carried 
the details of their analyses to their ultimate conclusion. The 
numerical results described in Mikk’s Table 1 as ‘Schmidt’s 
data’ are compatible with our equation (3). 

The numerical comparisons made by Mikk in his Table 1 
should be interpreted as follows. Consider, for example, the 
case of rp = 3. From his equations (31) and (29) we see that 
e2 = l/3, v = 243/968 = 0.25103 (this value agrees with his 
Table 1). But we see from our equation (1) that E = 22/9 when 
cp = 3, Bz = l/3, and with this value of E the minimum value of 
u is calculated from our equation (3) as 0.23477, a value less 
than 0.25103, as it should be. Note that when E = 2219 the 
values of cp and f?* for the optimum fm profile are (609i.” - 3)/6 
= 3.6130 and 0, respectively. 

Mikk’s analysis can be reinterpreted as furnishing the cor- 
rect answer to a different mathematical problem than the one 
posed at the begining of this paper. He has found the 
minimum mass of an annular fin on a cylindrical base that 
rejects heat to the surroundings by convection at a specified 
rate (measured in W/m of fin base) when the radius ri of the 
cylinder is not specified in advance, but is free to vary subject 
to the constraint that cp = r2/r1 is fixed. We do not believe 
that this mathematical problem has any useful engineering 
application. 

Ifr, is free to vary without any restriction, then &is arbitary 
in equation (3). It is not sufficient now to minimize 0, because 
the actual volume is 2m,V = (nrIQ~/kP9:)u = (nQ:/ 
21a39~)ue-’ if Q, is fixed, or {(2nr,Q,)*/2nia,}us if 
2nr,Q, is fixed. It now matters whether the heat rejected per 
meter of fin base, Qi, or the total heat rejected, 2nr, Q,, is 
fixed, because 

d(uc-i) -4(1+3&) 

de 3~~[1+3~+(4/3)~~+{1+(20J3)}{1+8~/3)}~’~’ 

d(u4 4 
-= 

d.s 3[1+2c+{(l+(2c/3)}{l+(8e/3)j”2]’ 

If Q, is fixed, the minimum volume occurs when E = so, i.e. 
when rl = 0, and is zero. If Zrrr,Q, is fixed, the minimum 
volume occurs when c = 0, i.e. when ri = X, and is also zero. 
Of course Q, = 0 in the latter case, and neither of these 
limiting solutions is very interesting. 
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