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In reality, when deposition occurs there exists a sticking
probability which is related to the adhesion of particles at the
immediate vicinity of the wall, even though there is no drifting
motion due to field effects [8]. The adhesive forces are either
electrical or liquid (viscosity and surface tension) in nature.
The observed mean deposition velocity therefore includes the
probability that some droplets do not merge into the wall
layer, but rebound and are removed by turbulent diffusion.
There is, however, the possibility that the rivulent flow in a
steel tube might be disturbed differently in an acrylic tube,
even though the two flow rates were the same. Since sticking
on a rivulet might be different from sticking on a dry surface,
the overall deposition rate in the rivulet flow of an acrylic tube
might be different from that in a steel tube. Because the
entrainment in the present case is insignificant, and also due to
the agreement of the deposition data for the two test surfaces,
it can be inferred that the sticking probability for these
conditions is close to unity. It therefore appears that the
deposition rates for dry wall dispersed flow, rivulet dispersed
flow, and annular dispersed flow are all represented by the
data of Fig. 2, for the conditions studied here.

It can be concluded from the above results and discussion
that for the conditions studied in the present work represent-
ing drop sizes and flow Reynolds number typical of many
two-phase flow applications, the data for adiabatic acrylic
tube may be used directly in the heat transfer analysis of
dispersed two-phase flow in metallic tubes provided that
there is no significant droplet entrainment. It should, how-
ever, be recognized that in some cases the condition of
adiabatic tube may be much different from the condition of a
heated tube due to non-uniform evaporation of droplet, vapor
generation near the tube surface and change of surface
tension at high temperatures, etc. Therefore, in such si-
tuations, the conclusion of this experiment may not be able to
be applied to heated tubes directly without justification.
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MINIMUM MASS CONVECTIVE ANNULAR FIN
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INTRODUCTION

IN A RECENT paper Mikk [1] has considered the problem of
minimizing the mass of an annular fin on a cylindrical base of
specified radius that rejects heat to the surroundings by
convection at a specified rate. He asserts that, contrary to the
results of Schmidt [2] and Duffin [3], the temperature at the
tip of the minimum mass fin is not the same as that of the
ambient fluid. In this paper we call attention to a logical flaw
in his analysis that invalidates his conclusions. Moreover, if
this flaw is corrected, his analysis then leads immediately to
the earlier results.

We will use Mikk’s notation and refer to equations in his
paper without further explanation.

NOMENCLATURE

X fin height [m];

q, dimensionless heat flux Q/Q, ;

Q. heat flux per meter of fin base [W/m];
r, radius [m];

v, dimensionless volume 2i¢*93V/Q3;

¥,  fin volume per meter of fin base [m?];

a, heat transfer coefficient [W/(m?K)];

d, fin thickness [m];

& dimensionless parameter @, /2ar 3, ;

3, excess of fin temperature over temperature of am-

bient fluid [K];

8, dimensionless temperature 3/9, ;

A thermal conductivity [W/(m-K)];

0, dimensionless radius r/l;

6,  dimensionless parameter al’/Ad, ;

¢,  radius ratio ry/r;

A dimensionless parameter Q,1/49,4,;

A,  dimensionless fin thickness /5.
Subscripts

1, fin base;

2, fin tip.
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THE FLAW IN MIKK’S ANALYSIS

The difficulty arises in the transition from Mikk’s equations
(29} and (30) to (31). Mikk assumes in this derivation that 8,
and ¢ are independent variables, so that ¢ can be held
constant while differentiating with respect to 8,. It is obvious,
however, from his equation (1) that / = r (¢ — 1), and then
from his equations (2) and (4) that a/y=al3,/Q,=(p—1)/
2¢ if ¢ is defined as Q,/2ar, 3,. Moreover, it follows from his
equations (19) and (23) that a/y = 3/[¢ + 2 + (20 + 1)0,].
We conclude that

6c — (@ —
g, - w-Vlet+2 1)
Qe+ 1)(p—1)

For fixed fluid conditions and fixed surface properties of
the fin, the quantities « and 9, are constant. The cylinder
radius r, and the heat transfer rate Q, (or 2zr,Q,) are also
specified. Therefore, ¢ is constant and 8, and ¢ are not
independent variables in Mikk’s equation (29).

If due account is taken of our equation (1), we can correctly
determine that

Qe+ 1Yele—1)[e? +o—2(1+3¢))
30, 54302 —20(1+48)+ 1 +26](@* —1—2¢)

Q2o +1) (e —1)°0;

= T S 2e(l+dn+ 42 1207 P

We observe that, if 6, <0, then Mikk’s equation (9) would
imply that dg/dp >0 when p = p,, his equation (13) would
then imply that g <0 if p is close to (but not equal to) p,, his
equation (20) would imply that d6/dp <0 for all p, and finally
his equation (8) would imply that A <0if p is close to (but not
equal to) p,. Although Mikk nowhere mentions it, this last
implication is clearly not acceptable, i.e. the only fin profiles
that make sense are such that A>0 when p, <p<p,.
Moreover, it follows from Mikk’s equation (9) that 8, <1.
Therefore, the only values of 8, that make sense lie on the
half-open interval [0, 1).

Because ¢>1 (obviously) for any finite r,, we infer
from (1) that @?+@<2(1+3¢); hence the factor
@*—2¢p(1+4¢) + 1 + 2¢ in the denominator of (2) does not
exceed (3 + 8¢) (1 — o), and so is negative. In addition, it
follows from (1), or the argument leading to (1), that

(pz—l_ Ho+1) e+l
2e P+2+Q2e+10, ¢+2+2¢p+1
because 8, < 1. We thus see that the factor ¢>—1—2¢in the
denominator of (2) is positive. We conclude from (2) that
dv/d8,>0 unless 8, = 0. The minimum value of v therefore

occurs when 8, = 0,i.e. when 92+ ¢ = 2(1 + 3g), and is such
that

Vin = @ + 1)@ + 2)°
=(9/166%) {1 + 4 + (8/3)e% — [1 + (8¢/3)]2). 3)
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Our equation (3) is of course the result that would have
been obtained by Schmidt [ 2] or Duffin [ 3] if they had carried
the details of their analyses to their ultimate conclusion. The
numerical results described in Mikk’s Table 1 as ‘Schmidt’s
data’ are compatible with our equation (3).

The numerical comparisons made by Mikk in his Table 1
should be interpreted as follows. Consider, for example, the
case of ¢ = 3. From his equations (31) and (29) we see that
0, = 1/3, v = 243/968 = 0.25103 (this value agrees with his
Table 1). But we see from our equation (1) that ¢ = 22/9 when
¢ = 3,8, = 1/3, and with this value of ¢ the minimum value of
v is calculated from our equation (3) as 0.23477, a value less
than 0.25103, as it should be. Note that when ¢ = 22/9 the
values of ¢ and 8, for the optimum fin profile are (609!2 — 3)/6
= 3.6130 and 0, respectively.

Mikk’s analysis can be reinterpreted as furnishing the cor-
rect answer to a different mathematical problem than the one
posed at the begining of this paper. He has found the
minimum mass of an annular fin on a cylindrical base that
rejects heat to the surroundings by convection at a specified
rate (measured in W/m of fin base) when the radius r, of the
cylinder is not specified in advance, but is free to vary subject
to the constraint that ¢ = r,/r, is fixed. We do not believe
that this mathematical problem has any useful engineering
application.

If r, is free to vary without any restriction, then eis arbitary
in equation (3). Itis not sufficient now to minimize v, because
the actual volume is 2nr,V = (nr,Q%/ic?$})w = (nQY/
24°8we™t if Q, is fixed, or {(2nr,Q,)*/2mia,}ve if
2mrQ, is fixed. It now matters whether the heat rejected per
meter of fin base, @, or the total heat rejected, 2nr, Q,, is
fixed, because

d(ve™ 1) B —4(1+3¢)
de  32[1+3e+(@4/3) + {1+ (20/3)} {1 +8¢/3)) 2
o ‘

de  3[1+2e+{(1+Qe/30H{1+@8e3) 7]

If Q, is fixed, the minimum volume occurs when ¢ = o, ie.
when 7, = 0, and is zero. If 2rnr,Q, is fixed, the minimum
volume occurs when ¢ = 0, i.e. when ry = 7%, and is also zero.
Of course Q; =0 in the latter case, and neither of these
limiting solutions is very interesting,
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